134 | 0 | 54 |
下载次数 | 被引频次 | 阅读次数 |
[目的]鼓粒期是大豆种质籽粒形成和充实的关键时期,源库关系的协调与否直接影响籽粒的灌浆速度和饱满度。研究大豆种质鼓粒期源库关系与籽粒皱缩的关系,有助于揭示皱缩籽粒形成的生理机制,以期为育种工作者提供更精准的育种目标和策略。[方法]采用不同来源的355份大豆种质资源为试材,测定了鼓粒期源库关系和成熟期籽粒皱缩等指标,并分析了鼓粒期源库关系与籽粒皱缩的关系。[结果]355份大豆种质可划分为5个皱缩等级,分别为0级(9份)、3级(321份)、5级(3份)、7级(21份)和9级(1份),等级越高,籽粒皱缩越严重。籽粒皱缩和源库关系相关分析发现,叶片净光合速率、营养器官干重、叶荚比和籽粒淀粉含量与皱缩等级存在负相关关系;叶面积指数和生殖器官干重与皱缩等级存在正相关关系。[结论]大豆种质的14个源库关系性状综合成4个主成分因子,累积贡献率为78.836%;多元线性回归分析表明,叶片净光合速率、叶面积指数、营养器官干重、生殖器官干重、籽粒淀粉含量等主要源库关系性状是影响籽粒皱缩等级的主要因素。
Abstract:[Objective]The bulging stage is a critical period for grain formation and filling of soybean germplasm. The co-ordination of source-sink relationships directly affects the rate and fullness of seed filling. The study of the relationship between source-sink relationship and grain wrinkling at the bulging stage of soybean germplasm can help to reveal the physiological mechanism of wrinkling grain formation, so to provide breeders with more precise breeding goals and strategies. [Methods]355 soybean germplasm from different sources were used as test materials, and indicators such as source-sink relationship at grain filling stage and seed wrinkling at maturity were determined. [Results]355 soybean germplasm could be classified into 5 grades of wrinkling, namely grade 0(9), grade 3(321), grade 5(3), grade 7(21) and grade 9(1), and the higher the grade, the more serious the wrinkling of the seeds. The correlation analyses of seed wrinkling and source-sink relationships revealed negative correlations between leaf net photosynthetic rate, dry weight of nutrient organ, leaf-to-pod ratio and seed starch content and wrinkling level; the leaf area index and reproductive organ dry weight were positively correlated with wrinkling level. [Conclusion]Fourteen source-sink relationship traits of soybean germplasm were combined into four principal component factors with a cumulative contribution of 78.836%; multiple linear regression analyses showed that major source-sink relationship traits such as net photosynthetic rate of leaves, leaf area index, dry weight of nutrient organs, dry weight of reproductive organs, and starch content of grains were the main factors affecting the grade of seed wrinkling.
[1] QIU L J,LI Y H,GUAN R X,et al.Establishment representative testing and research progress of soybean core collection and mini core collection[J].Acta Agronomica Sinica,2009,35:571-579.
[2]孙现军,胡正,姜雪敏,等.大豆种质资源苗期耐盐性鉴定评价与筛选[J].作物学报,2024,50(9):2179-2186.SUN X J,HU Z,JIANG X M,et al.Identification,evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage[J].Acta Agronomica Sinica,2024,50(9):2179-2186.
[3]聂波涛,刘德泉,陈健,等.北方春大豆品种农艺和品质性状分析与综合评价[J].作物学报,2024,50(9):2248-2266.NIE B T,LIU D Q,CHEN J,et al.Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China[J].Acta Agronomica Sinica,2024,50(9):2248-2266.
[4] LIU Y L,WANG M Q,HE L,et al.Analysis of grey correlative grades among the main agronomic characters and qualities of soybean[J].Journal of Agricultural Sciences,2020,10(7):465-469.
[5]赵连佳,李淦,徐麟,等.不同大豆品种在新疆生态区主要农艺性状表现及产量的相关分析[J].新疆农业科学,2023,60(7):1663-1670.ZHAO L J,LI G,XU L,et al.Analysis of the main characters of soybean varieties in Xinjiang and t-heir correlation with yield[J].Xinjiang Agricultural Sciences,2023,60(7):1663-1670.
[6]徐瑶,冷苏凤,张玉明,等.1982-2021年江苏省审定大豆品种主要农艺性状、产量、品质及抗性演变分析[J].中国油料作物学报,2022,44(4):780-789.XU Y,LENG S F,ZHANG Y M,et al.Evolution analysis of main agronomic traits,yield,quality and r-esistance of soybean varieties released in Jiangsu Province from 1982 to 2021[J].Chinese Journal of Oil Crop Sciences,2022,44(4):780-789.
[7]白智媛,陈向阳,郑阿香,等.1991-2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J].作物学报,2023,49(1):177-187.BAI Z Y,CHEN X Y,ZHENG A X,et al.Spatial-temporal variations for agronomic and quality charact-ers of soybeans varieties(strains)tested in America from 1991 to 2019[J].Acta Agronomica Sinica,2023,49(01):177-187.
[8] HU Y,CHEN S Y,ZHANG J S,et al.Global analysis of seed transcriptomes reveals a novel PLATZ re-gulator for seed size and weight control in soybean[J].New Phytologis,2023,240(6):2436-2454.
[9] LU X,XIONG Q,CHENG T,et al.A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight[J].Molecular Plant,2017,10(5):670-684.
[10]禹宽平.分子生物学解开了孟德尔豌豆种子皱缩之谜[J].生物学通报,1993(4):14-15.YU K P.Molecular biology solves the mystery of Mendel's wrinkled pea seeds[J].Bulletin of Biology,1993(4):14-15.
[11]田梦.种子饱满度及淹水深度对水稻直播出苗均匀度的影响[D].武汉:华中农业大学,2023.TIAN M.Effects of seed plumpness and submergence depth on seedling evenness of direct seeding rice[D].Wuhan:Huazhong Agricultural University,2023.
[12]丁芬玲.新疆范围内影响棉花种子饱满程度的原因分析[J].农业与技术,2016,36(16):26.DING F L.Influencing cotton seed fullness within Xinjiang[J].Agriculture and Technology,2016,36(16):26.
[13] YANG G,WANG Q,YANG G,et al.Application of open panicle traits in improving the filling cha-racteristics at the base of indica rice panicles[J].Plants(Basel),2024,13(15):2035.
[14]崔光军.花生突变体种子皱缩形成机理及其遗传研究[D].泰安:山东农业大学,2010.CUI G J.Research on formation mechanism and genetic analysis of wrinkled seed of mutant in Pea-nut(Arachis hypogaea L.)[D].Taian:Shandong Agricultural University,2010.
[15] MEGA R,KIM J S,TANAKA H,et al.Metabolic and transcriptomic profiling during wheat seed devel-opment under progressive drought conditions[J].Scientific Reports,2023,13(1):15001.
[16] YAO X D,LI C H,LI S Y,et al.Effect of shade on leaf photosynthetic capacity, light-intercepting, electr-on transfer and energy distribution of soybeans[J].Plant Growth Regulation,2017,83(3):409-416.
[17] YU S M,LO S F,HO T H D.Source-sink communication:regulated by hormone, nutrient, and stress cro-ss signaling[J].Trends in Plant Science,2015,20(12):844-857.
[18] LIU S L,LIU Z,LI H,et al.The impact of global dimming on crop yields is determined by the source-sink imbalance of carbon during grain filling[J].Global Change Biology,2021,27(3):689-708.
[19] LIU Y,NOURELDIN HH,ZHANG L,et al.Biotechnological detoxification:an unchanging source-sink balance strategy for crop improvement[J].Trends in Plant Science,2023,28(2):135-138.
[20] HU B L,WAN Y,LI X,et al.Analysis on genetic diversity of phenotypic traits in rice(Oryza sativa)core collection and its comprehensive assessment[J].Acta Agronomica Sinica,2012,38:829–839.
[21]余兰,闫平,曲辉辉,等.黑龙江省大豆渍害影响定量评价指标构建[J].东北农业大学学报,2023,54(11):15-21.YU L,YAN P,QU H H,et al.Construction of quantitative evaluation index of impact of soybean water logging in Heilongjiang Province[J].Journal of Northeast Agricultural University,2023,54(11):15-21.
[22] SUN D L,BIAN N F,CHEN Z D,et al.Comprehensive evaluation and index screening of phenotypic traits in peanut germplasm resources[J].Plant Genet Resour,2018,19:865-874.
[23]梁子聪,赵伟,李佳宜,等.辽宁省不同年代大豆品种农艺性状和产量的遗传改良[J].沈阳农业大学学报,2024,55(3):267-275.LIANG Z C,ZHANG W,LI J Y,et al.Genetic improvement of agronomic traits and yield of soybean varieties of different ages in Liaoning Province[J].Journal of Shenyang Agricultural University,2024,55(3):267-275.
[24]孙畅,刘美玲,刘子君,等.低磷胁迫下大豆苗期根系性状全基因组关联分析[J].沈阳农业大学学报,2024,55(6):663-676.SUN C,LIU M L,LIU Z J,et al.Genome-wide association analysis of root traits at seedlings stage under low phosphorus stress in soybean(Glycine max L.)[J].Journal of Shenyang Agricultural University,2024,55(6):663-676.
[25]孙佩,张宏,杨媛,等.基于SSR标记的蔷薇属种质资源遗传多样性分析及指纹图谱构建[J/OL].园艺学报,1-16[2025-03-25].https://doi.org/10.16420/j.issn.0513-353x.2024-0433.SUN P,ZHANG H,YANG Y,et al.Genetic diversity analysis and fingerprint construction of 80 R-osa germplasm resources[J/OL].Acta Horticulturae Sinica,1-16[2025-03-25].https://doi.org/10.16420/j.issn.0513-353x.2024-0433.
[26]范惠玲,路妍,金文海,等.基于根系表型性状的蚕豆耐盐碱性鉴定与综合评价[J/OL].植物学报,1-14[2025-03-25].http://kns.cnki.net/kcms/detail/11.5705.Q.20250312.2338.002.html.FAN H L,LU Y,JIN W H,et al.Identification and comprehensive evaluation of faba bean salt-alkalitolerance based on root phenotypic traits[J/OL].Chinese Bulletin of Botany,1-14[2025-03-25].http://kns.cnki.net/kcms/detail/11.5705.Q.20250312.2338.002.html.
[27] XU W,CUI K,XU A,et al.Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings[J].Acta Physiologiae Plantarum,2015,37(2):9.
[28]郭小红,陈文杰,覃夏燕,等.大豆种皮皱缩症抗性鉴定方法:CN202410411940.3[P].2024-08-13.GUO X H,CHEN W J,TAN X Y,et al.Identification of resistance to soybean seed coat wrinkling di-sease:CN202410411940.3[P].2024-08-13.
[29]王兴才,杨文钰.基于间套作弱光胁迫下作物源库协调与产量研究进展[J].中国油料作物学报,2019,41(2):292-299.WANG X C,YANG W Y.Review on relationship of source-sink and crop yield under shading stress in intercropping systems[J].Chinese Journal of Oil Crop Sciences,2019,41(2):292-299.
[30]孙影,叶录,王凤梧,等.基于主成分分析和聚类分析的大豆高产群体性状研究[J].江西农业学报,2023,35(6):24-29.SUN Y,YE L,WANG F W,et al.Study on high-yield population traits of soybean based on principal component analysis and cluster analysis[J].Acta Agriculturae Jiangxi,2023,35(6):24-29.
[31]武月莲,于忠勇,雷凤燕,等.大豆不育系农艺及生理性状对单株皱粒百分比的影响[J].内蒙古民族大学学报(自然科学版),2023,38(5):423-427.WU Y L,YU Z Y,LEI F Y,et al.Effects of agronomic and physiological characters of soybean sterile lines on the percentage of wrinkled kernels per plant[J].Journal of Inner Mongolia Minzu University(Natural Sciences Edition),2023,38(5):423-427.
[32]武敬也,马琳,吴欣明,等.180份饲用燕麦种质资源表型遗传多样性研究[J].草地学报,2023,31(5):1501-1510.WU J Y,MA L,WU X Y,et al.Study on phenotypic genetic diversity of 180 feed oat germplasms[J].Acta Agrestia Sinica,2023,31(5):1501-1510.
[33]李阿蕾,戴志刚,陈基权,等.239份长果种黄麻种质资源萌发期耐镉性评价及耐镉资源筛选[J].作物学报,2023,49(10):2677-2699.LI A L,DAI Z G,CHEN J Q,et al.Evaluation of cadmium tolerance in germination stage of 239 dark jute(Corchorus olitorius L.)germplasm resources and screening of cadmium tolerance resources[J].Acta Agronomica Sinica,2023,49(10):2677-2699.
[34]张磊磊,范阿棋,洪梅,等.647份海岛棉种质资源遗传多样性分析[J].植物遗传资源学报,2023,24(1):307-324.ZHANG L L,FAN A Q,HONG M,et al.Genetic diversity analysis of 647 sea island cotton germplasm resources[J].Journal of Plant Genetic Resources,2023,24(1):307-324.
[35]陈观杰,郑殿峰,冯乃杰,等.雷州半岛地区大豆农艺性状因子和聚类分析[J].浙江农业科学,2022,63(3):485-491,523.CHEN G J,ZHENG D F,FENG N J,et al.Factor and cluster analysis of agronomic traits of soybean in Leizhou Peninsula area[J].Journal of Zhejiang Agricultural Sciences,2022,63(3):485-491,523.
[36]徐泽俊,齐玉军,邢兴华,等.黄淮海大豆种质农艺与品质性状分析及综合评价[J].植物遗传资源学报,2022,23(2):468-480.XU Z J,QI Y J,XING X H,et al.Analysis and Evaluation of agronomic and quality traits in soybean germplasms from Huang-Huai-Hai region[J].Journal of Plant Genetic Resources,2022,23(2):468-480.
[37]任廷虎,李宗尧,杜斌,等.有机肥施用及合理密植提高黄淮海地区夏大豆光系统性能与籽粒产量[J].植物营养与肥料学报,2021,27(8):1361-1375.REN Y H,LI Z Y,DU B,et al.Improving photosynthetic performance and yield of summer soybean by organic fertilizer application and increasing plant density[J].Journal of Plant Nutrition and Fertilizers,2021,27(8):1361-1375.
[38]张国伟,李凯,李思嘉,等.减库对大豆叶片碳代谢的影响[J].作物学报,2022,48(2):529-537.ZHANG G W,LI K,LI J S,et al.Effects of sink-limiting treatments on leaf carbon metabolism in soybean[J].Acta Agronomica Sinica,2022,48(2):529-537.
基本信息:
DOI:
中图分类号:S565.1
引用信息:
[1]黄俊霞,冀宝璐,赵伟等.大豆种质鼓粒期源库关系及籽粒皱缩性鉴定指标筛选[J].沈阳农业大学学报,2025,56(03):14-22.
基金信息:
辽宁省科技厅农业重大专项项目(2022JH1/10200002)